Nachfolgend ist die verwendete Literatur kapitelweise aufgeführt. Klicken Sie auf einen Kapitelnamen, um die Liste aufzublättern und zu schließen.

Einleitung
  • Rozenblit L & Keil F (2002) The misunderstood limits of folk science: An illusion of explanatory depth. Cognitive Science 26:521-562, doi: 10.1207/s15516709cog2605_1

  • Kruger J & Dunning D (1999) Unskilled and unaware of it: How difficulties in recognizing one's own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology 77:1121-1134, doi: 10.1037/0022-3514.77.6.1121

  • Nishimasu H, Ran FA et al. (2014) Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell 156:935-949, doi: 10.1016/j.cell.2014.02.001

  • Wünschiers R (2019) Generation Gen-Schere: Wie begegnen wir der gentechnologischen Revolution. Springer, Berlin, ISBN 978-3662590478, doi: 10.1038/s41562-018-0520-3

  • Robinson T (2017) Genetik für Dummies. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, ISBN 978-3-527-71417-9

  • Fernbach PM, Light N et al. (2019) Extreme opponents of genetically modified foods know the least but think they know the most. Nat Hum Behav 3:251-256, doi: 10.1038/s41562-018-0520-3

  • Küntzel K (2019) Nachhaltig & ökologisch Leben für Dummies. John Wiley & Sons, Incorporated, Newark, ISBN 978-3-527-82178-5

  • NASA, Images on the golden record. Zugegriffen unter Internetlink, zugegriffen am 19/01/21

Kapitel 1: Die Welt der Gene
  • Chargaff E (2003) Stimmen im Labyrinth: Drei Dialoge über die Natur und ihre Erforschung. Klett-Cotta, Stuttgart, ISBN 978-3608935806

  • Watson JD & Crick FHC (1953) Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 171:737-738, doi: 10.1038/171737a0

  • Redaktion (2007), Labor suspendiert Nobelpreisträger Watson. Zugegriffen unter Internetlink, zugegriffen am 30/11/20

  • — (2014), Goldmedaille für 4,7 Millionen Dollar versilbert. Zugegriffen unter Internetlink, zugegriffen am 30/11/20

  • — (2019), Nobelpreisträger Watson verliert Ehrentitel wegen rassistischer Äußerungen. Zugegriffen unter Internetlink, zugegriffen am 30/11/20

  • Sender R, Fuchs S & Milo R (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology 14:e1002533, doi: 10.1371/journal.pbio.1002533

  • Sender R & Milo R (2021) The distribution of cellular turnover in the human body. Nat Med 27:45-48, doi: 10.1038/s41591-020-01182-9

  • Preston BD, Albertson TM & Herr AJ (2010) DNA replication fidelity and cancer. Seminars in Cancer Biology 20:281-293, doi: 10.1016/j.semcancer.2010.10.009

  • de Vries H (1901) Die Mutationstheorie. Versuche und Beobachtungen über die Entstehung von Arten im Pflanzenreich. Veit & Comp., doi: 10.5962/bhl.title.11336

  • McClintock B (1931) The Order of the Genes C, Sh and Wx in Zea Mays with Reference to a Cytologically Known Point in the Chromosome. Proc Natl Acad Sci USA 17:485-491, doi: 10.1073/pnas.17.8.485

  • Creighton HB & McClintock B (1931) A Correlation of Cytological and Genetical Crossing-Over in Zea Mays. Proc Natl Acad Sci USA 17:492-497, doi: 10.1073/pnas.17.8.492

  • Wolpert L, Ghysen A & García-Bellido A (1998) Debatable issues. The International journal of developmental biology 42:511-518

  • Mendel G (1866) Versuche über Pflanzen-Hybriden. Verhandlungen des Naturforschenden Vereins zu Brünn 4:3-47, doi: 10.5962/bhl.title.61004

  • Bateson W (1902) Mendel's principles of heredity: A defence. University Press, doi: 10.5962/bhl.title.46238

  • Brem G (Editor) (2017) 150 Jahre Mendelsche Regeln: Vom Erbsenzählen zum Gen-Editieren, Nova Acta Leopoldina, Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften: Wissenschaftliche Verlagsgesellschaft, ISBN 978-3-8047-3703-7

  • Johannsen W (1909) Elemente der exakten Erblichkeitslehre. Verlag von Gustav Fischer, Jena, doi: 10.5962/bhl.title.1060

  • Stotz K & Griffiths P (2004) Genes: Philosophical Analyses Put to the Test. History and Philosophy of the Life Sciences 26:5-28, doi: 10.2307/23333378

  • Pearson H (2006) What is a gene? Nature 441:398-401, doi: 10.1038/441398a

  • Delmore KE, Toews DP et al. (2016) The Genetics of Seasonal Migration and Plumage Color. Current Biology 26:2167-2173, doi: 10.1016/j.cub.2016.06.015

  • Dolgin E (2017) The most popular genes in the human genome. Nature 551:427-431, doi: 10.1038/d41586-017-07291-9

  • Armstrong S (2014) P53: The gene that cracked the cancer code. Bloomsbury Sigma, London, ISBN 978-1-4729-1053-0

  • Knudson AG (1971) Mutation and Cancer: Statistical Study of Retinoblastoma. Proc Natl Acad Sci USA 68:820-823, doi: 10.1073/pnas.68.4.820

  • Finlay CA, Hinds PW & Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083-1093, doi: 10.1016/0092-8674(89)90045-7

  • Belyi VA, Ak P et al. (2009) The Origins and Evolution of the p53 Family of Genes. Cold Spring Harbor Perspectives in Biology 2:a001198-a001198, doi: 10.1101/cshperspect.a001198

  • Wagener C & Müller O (2009) Molekulare Onkologie. Thieme, Stuttgart, 3rd ed., ISBN 9783131035134

  • Kim EB, Fang X et al. (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:223-227, doi: 10.1038/nature10533

  • Deuker MM, Lewis KN et al. (2020) Unprovoked Stabilization and Nuclear Accumulation of the Naked Mole-Rat p53 Protein. Scientific Reports 10, doi: 10.1038/s41598-020-64009-0

  • Goethe J (2016) Gedichte: Ausgabe letzter Hand 1827. Hofenberg, ISBN 978-3-8430-1760-2

  • Pozhitkov AE, Neme R et al. (2017) Tracing the dynamics of gene transcripts after organismal death. Open Biology 7:160267, doi: 10.1098/rsob.160267

  • Ussery DW & Structure D (2002), A-, B-and Z-DNA Helix Families, Encyclopedia of Life Sciences. doi: 10.1038/npg.els.0003122

  • Rutherford A, Dna's twist to the right is not to be meddled with, so let's lose the lefties. Zugegriffen unter Internetlink, zugegriffen am 30/11/20

  • Schneider T, The left handed dna hall of fame. Zugegriffen unter Internetlink, zugegriffen am 30/11/20

  • Woese CR & Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74:5088-5090, doi: 10.1073/pnas.74.11.5088

  • Andersen KG, Rambaut A et al. (2020) The proximal origin of SARS-CoV-2. Nature Medicine 26:450-452, doi: 10.1038/s41591-020-0820-9

  • Hou W (2020) Characterization of codon usage pattern in SARS-CoV-2. Virol J 17, doi: 10.1186/s12985-020-01395-x

  • The International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928-933, doi: 10.1038/35057149

  • Ingram VM (1956) A Specific Chemical Difference Between the Globins of Normal Human and Sickle-Cell Anämia Hämoglobin. Nature 178:792-794, doi: 10.1038/178792a0

  • Chang JC & Kan YW (1979) Beta zero thalassemia, a nonsense mutation in man. Proc Natl Acad Sci USA 76:2886-2889, doi: 10.1073/pnas.76.6.2886

  • Hamosh A, King T et al. (1992) Cystic fibrosis patients bearing both the common missense mutation Gly>Asp at codon 551 and the delta F508 mutation are clinically indistinguishable from delta F508 homozygotes, except for decreased risk of meconium ileus. American journal of human genetics 51 2:245-50

  • Wolf AB, Caselli RJ et al. (2013) APOE and neuroenergetics: An emerging paradigm in Alzheimers disease. Neurobiology of Aging 34:1007-1017, doi: 10.1016/j.neurobiolaging.2012.10.011

  • Vilarrasa-Blasi R, Soler-Vila P et al. (2021) Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nat Commun 12, doi: 10.1038/s41467-020-20849-y

Kapitel 2: Von der Vererbung zur quantitativen Genetik
  • Szabó A (2017) Ursprung des Begriffs Genetik und seine Verwendung vor und nach Mendel. Nova Acta Leopoldina 65-79

  • Ellis TN, Hofer JM et al. (2011) Mendel, 150 years on. Trends in Plant Science 16:590-596, doi: 10.1016/j.tplants.2011.06.006

  • Jollos V (1921) Experimentelle Protistenstudien. G. Fischer,, doi: 10.5962/bhl.title.11942

  • Kahneman D (2012) Schnelles Denken, langsames Denken. Siedler, München, ISBN 9783886808861

  • Galton F (1886) Regression Towards Mediocrity in Hereditary Stature. The Journal of the Anthropological Institute of Great Britain and Ireland 15:246, doi: 10.2307/2841583

  • Wikipedia, Regression toward the mean. Zugegriffen unter Internetlink, zugegriffen am 22/03/21

  • Boyle EA, Li YI & Pritchard JK (2017) An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell 169:1177-1186, doi: 10.1016/j.cell.2017.05.038

  • Mähler N, Schiffthaler B et al. (2020) Leaf shape in Populus tremula is a complex, omnigenic trait. Ecology and Evolution 10:11922-11940, doi: 10.1002/ece3.6691

  • Galton F (1883) Inquiries into human faculty and its development. MacMillan Co, doi: 10.1037/14178-000

  • Ploetz A (1895) Grundlinien einer Rassen-Hygiene: Die Tüchtigkeit unsrer Rasse und der Schutz der Schwachen: Ein Versuch über Rassenhygiene und ihr Verhältniss zu den humanen Idealen, besonders zum Socialismus. Fischer

Kapitel 3: Vom Gen übers Genom zum Ich
  • Slonim N, Bilu Y et al. (2021) An autonomous debating system. Nature 591:379-384, doi: 10.1038/s41586-021-03215-w

  • Rebout N, Lone JC et al. (2021) Measuring complexity in organisms and organizations. R Soc open sci 8, doi: 10.1098/rsos.200895

  • Waring M & Britten RJ (1966) Nucleotide Sequence Repetition: A Rapidly Reassociating Fraction of Mouse DNA. Science 154:791-794, doi: 10.1126/science.154.3750.791

  • Peterson DG, Wessler SR & Paterson AH (2002) Efficient capture of unique sequences from eukaryotic genomes. Trends in Genetics 18:547-550, doi: 10.1016/s0168-9525(02)02764-6

  • Van Valen L (1973) A new evolutionary law. Evolutionary theory 1:1-30

  • Carroll L (1998) Alice hinter den Spiegeln. Insel-Verlag, Frankfurt am Main, ISBN 9783458317975

  • Weber-Lehmann J, Schilling E et al. (2014) Finding the needle in the haystack: Differentiating "identical" twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Science International: Genetics 9:42-46, doi: 10.1016/j.fsigen.2013.10.015

  • Fontdevila A (2011) The dynamic genome: A Darwinian approach. Oxford University Press, New York, ISBN 978-0199541379

  • Carretero-Paulet L, Librado P et al. (2015) High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba. Molecular Biology and Evolution 32:1284-1295, doi: 10.1093/molbev/msv020

  • Bodea GO, McKelvey EGZ & Faulkner GJ (2018) Retrotransposon-induced mosaicism in the neural genome. Open Biol 8:180074, doi: 10.1098/rsob.180074

  • Locke DP, Hillier LW et al. (2011) Comparative and demographic analysis of orang-utan genomes. Nature 469:529-533, doi: 10.1038/nature09687

  • Payer LM, Steranka JP et al. (2017) Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc Natl Acad Sci USA 114:E3984-E3992, doi: 10.1073/pnas.1704117114

  • Comas D, Plaza S et al. (2001) Recent Insertion of an Alu Element Within a Polymorphic Human-Specific Alu Insertion. Molecular Biology and Evolution 18:85-88, doi: 10.1093/oxfordjournals.molbev.a003722

  • Cordaux R & Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691-703, doi: 10.1038/nrg2640

  • Touchon M, Hoede C et al. (2009) Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths. PLoS Genetics 5:e1000344, doi: 10.1371/journal.pgen.1000344

  • Stokes HW & Gillings MR (2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiology Reviews 35:790-819, doi: 10.1111/j.1574-6976.2011.00273.x

  • Stegemann S & Bock R (2009) Exchange of Genetic Material Between Cells in Plant Tissue Grafts. Science 324:649-651, doi: 10.1126/science.1170397

  • Sjölund M, Bonnedahl J et al. (2008) Dissemination of Multidrug-Resistant Bacteria into the Arctic. Emerg Infect Dis 14:70-72, doi: 10.3201/eid1401.070704

  • Bartoloni A, Pallecchi L et al. (2009) Antibiotic resistance in a very remote Amazonas community. International Journal of Antimicrobial Agents 33:125-129, doi: 10.1016/j.ijantimicag.2008.07.029

  • Clemente JC, Pehrsson EC et al. (2015) The microbiome of uncontacted Amerindians. Sci Adv 1:e1500183, doi: 10.1126/sciadv.1500183

  • Dunning LT, Olofsson JK et al. (2019) Lateral transfers of large DNA fragments spread functional genes among grasses. Proc Natl Acad Sci USA 116:4416-4425, doi: 10.1073/pnas.1810031116

  • _H_uman Genome Sequencing Consortium I (2001) Initial sequencing and analysis of the human genome. Nature 409:860-921, doi: 10.1038/35057062

  • Venter JC, Adams MD et al. (2001) The Sequence of the Human Genome. Science 291:1304-1351, doi: 10.1126/science.1058040

  • Miga KH, Koren S et al. (2020) Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:79-84, doi: 10.1038/s41586-020-2547-7

  • Reardon S (2021) A complete human genome sequence is close: How scientists filled in the gaps. Nature 594:158-159, doi: 10.1038/d41586-021-01506-w

  • Karki R, Pandya D et al. (2015) Defining "mutation" and "polymorphism" in the era of personal genomics. BMC Med Genomics Medical Genomics 8, doi: 10.1186/s12920-015-0115-z

  • Ebert P, Audano PA et al. (2021) Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science eabf7117, doi: 10.1126/science.abf7117

  • Sudmant PH, et al. (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526:75-81, doi: 10.1038/nature15394

  • Abel HJ, Larson DE et al. (2018) Mapping and characterization of structural variation in 17,795 deeply sequenced human genomes. BioRxiv doi: 10.1101/508515

  • Lin Z (2004) Genetics: Genomic Research and Human Subject Privacy. Science 305:183-183, doi: 10.1126/science.1095019

  • Consortium TGP (2015) A global reference for human genetic variation. Nature 526:68-74, doi: 10.1038/nature15393

  • — (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061-1073, doi: 10.1038/nature09534

  • Ng SB, Turner EH et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272-276, doi: 10.1038/nature08250

  • Borek E (1973) The sculpture of life. Columbia University Press, London, ISBN 9780231083348

  • Cooper A & Fortey R (1998) Evolutionary explosions and the phylogenetic fuse. Trends in Ecology and Evolution Evolution 13:151-156, doi: 10.1016/s0169-5347(97)01277-9

  • Hueber SD, Weiller GF et al. (2010) Improving Hox Protein Classification across the Major Model Organisms. PLoS ONE ONE 5:e10820, doi: 10.1371/journal.pone.0010820

  • Haughn GW & Somerville CR (1988) Genetic control of morphogenesis inArabidopsis. Dev Genet 9:73-89, doi: 10.1002/dvg.1020090202

  • Turing A (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237:37-72, doi: 10.1098/rstb.1952.0012

  • Tung A & Levin M (2020) Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Developmental Biology 461:1-12, doi: 10.1016/j.ydbio.2020.01.010

  • Pinet K & McLaughlin KA (2019) Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Developmental Biology 451:134-145, doi: 10.1016/j.ydbio.2019.04.001

  • Maden M (2008) Axolotl/Newt. In: Methods In Molecular Biology, 467-480, Humana Press, doi: 10.1007/978-1-60327-483-8_32

  • Brown FA & Chow CS (1973) Interorganismic and Environmental Influences Through Extremely Weak Electromagnetic Fields. The Biological Bulletin 144:437-461, doi: 10.2307/1540299

  • Harrison CGA & Funnell BM (1964) Relationship of Palaeomagnetic Reversals and Micropalaeontology in Two Late Caenozoic Cores from the Pacific Ocean. Nature 204:566-566, doi: 10.1038/204566a0

Kapitel 4: Safety First: Gentechnik und Gesetze
  • Berg P, Baltimore D et al. (1974) Potential Biohazards of Recombinant DNA Molecules. Science 185:303-303, doi: 10.1126/science.185.4148.303

  • — (1975) Summary statement of the Asilomar conference on recombinant DNA molecules. Proc Natl Acad Sci USA 72:1981-1984, doi: 10.1073/pnas.72.6.1981

Kapitel 5: Drei Gene verändern die Welt
  • Suttle CA (2005) Viruses in the sea. Nature 437:356-361, doi: 10.1038/nature04160

  • Camarillo-Guerrero LF, Almeida A et al. (2021) Massive expansion of human gut bacteriophage diversity. Cell 184:1098-1109.e9, doi: 10.1016/j.cell.2021.01.029

  • Kessler C & Manta V (1990) Specificity of restriction endonucleases and DNA modification methyltransferases – a review (edition 3). Gene 92:1-240, doi: 10.1016/0378-1119(90)90486-b

  • Arber W & Linn S (1969) DNA Modification and Restriction. Annual Review of Biochemistry 38:467-500, doi: 10.1146/annurev.bi.38.070169.002343

  • Lederberg J (1952) Cell Genetics and Hereditary Symbiosis. Physiological Reviews 32:403-430, doi: 10.1152/physrev.1952.32.4.403

  • Chang ACY & Cohen SN (1974) Genome Construction Between Bacterial Species In Vitro: Replication and Expression of Staphylococcus Plasmid Genes in Escherichia coli. Proc Natl Acad Sci USA 71:1030-1034, doi: 10.1073/pnas.71.4.1030

  • Pappalardo AM, Petraccioli A et al. (2019) From Fish Eggs to Fish Name: Caviar Species Discrimination by COIBar-RFLP, an Efficient Molecular Approach to Detect Fraud in the Caviar Trade. Molecules 24:2468, doi: 10.3390/molecules24132468

  • Ropka-Molik K, Stefaniuk-Szmukier M et al. (2019) The use of the SLC16A1 gene as a potential marker to predict race performance in Arabian horses. BMC Genetics 20, doi: 10.1186/s12863-019-0774-4

  • Lehman IR, Bessman MJ et al. (1958) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Biol Chem 233:163-170

  • Klenow H & Henningsen I (1970) Selective Elimination of the Exonuclease Activity of the Deoxyribonucleic Acid Polymerase from Escherichia coli B by Limited Proteolysis. Proc Natl Acad Sci USA 65:168-175, doi: 10.1073/pnas.65.1.168

  • Klenow H (2003) Some Selected Recollections from a Life with Biochemistry. In: Comprehensive Biochemistry, 285-317, Elsevier, doi: 10.1016/s0069-8032(03)42010-x

  • Chien A, Edgar DB & Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of Bacteriology 127:1550-1557, doi: 10.1128/jb.127.3.1550-1557.1976

  • Wheeler DA, Srinivasan M et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872-876, doi: 10.1038/nature06884

  • Levy S, Sutton G et al. (2007) The Diploid Genome Sequence of an Individual Human. PLoS Biol Biology 5:e254, doi: 10.1371/journal.pbio.0050254

  • Venter J (2009) Entschlüsselt mein Genom, mein Leben. S. Fischer, Frankfurt, M, ISBN 3100870301

  • van der Valk T, Pečnerová, P et al. (2021) Million-year-old DNA sheds light on the genomic history of mammoths. Nature 591:265-269, doi: 10.1038/s41586-021-03224-9

  • Pečnerová P, del Molino DD et al. (2021) Mammuthus sp. (Early and Middle Pleistocene Mammoths). Trends in Genetics doi: 10.1016/j.tig.2021.04.006

  • Quick J, Loman NJ et al. (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228-232, doi: 10.1038/nature16996

  • Kafetzopoulou LE, Pullan ST et al. (2019) Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363:74-77, doi: 10.1126/science.aau9343

  • Walker A, Houwaart T et al. (2020) Genetic structure of SARS-CoV-2 reflects clonal superspreading and multiple independent introduction events, North-Rhine Westphalia, Germany, February and March 2020. Eurosurveillance 25, doi: 10.2807/1560-7917.es.2020.25.22.2000746

  • Saiki R, Scharf S et al. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350-1354, doi: 10.1126/science.2999980

  • Mullis KB & Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. In: Methods in Enzymology, 335-350, Elsevier, doi: 10.1016/0076-6879(87)55023-6

  • de Souza N (2011) Primer: Genome editing with engineered nucleases. Nat Methods 9:27-27, doi: 10.1038/nmeth.1848

  • Kim YG, Cha J & Chandrasegaran S (1996) Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156-1160, doi: 10.1073/pnas.93.3.1156

  • Carroll D (2011) Genome Engineering With Zinc-Finger Nucleases. Genetics 188:773-782, doi: 10.1534/genetics.111.131433

  • Hanas JS, Hazuda DJ et al. (1983) Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. Journal of Biological Chemistry 258:14120-14125, doi: 10.1016/s0021-9258(17)43831-2

  • Boch J (2011) TALEs of genome targeting. Nat Biotechnol 29:135-136, doi: 10.1038/nbt.1767

  • Karginov FV & Hannon GJ (2010) The CRISPR System: Small RNA-Guided Defense in Bacteria and Archaea. Molecular Cell 37:7-19, doi: 10.1016/j.molcel.2009.12.033

  • Ishino Y, Shinagawa H et al. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429-5433, doi: 10.1128/jb.169.12.5429-5433.1987

  • Mojica FJM, Juez G & Rodriguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9:613-621, doi: 10.1111/j.1365-2958.1993.tb01721.x

  • Mojica F, Ferrer C et al. (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17:85-93, doi: 10.1111/j.1365-2958.1995.mmi_17010085.x

  • Mojica FJ, Díez-Villaseñor C et al. (2005) Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. J Mol Evol 60:174-182, doi: 10.1007/s00239-004-0046-3

  • Jansen R, van Embden JDA et al. (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565-1575, doi: 10.1046/j.1365-2958.2002.02839.x

  • Makarova KS, Grishin NV et al. (2006) A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7, doi: 10.1186/1745-6150-1-7

  • García-Martínez J, Maldonado RD et al. (2018) The CRISPR conundrum: Evolve and maybe die, or survive and risk stagnation. Microb Cell 5:262-268, doi: 10.15698/mic2018.06.634

  • Barrangou R, Fremaux C et al. (2007) CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 315:1709-1712, doi: 10.1126/science.1138140

  • Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55-61, doi: 10.1038/nature15386

  • Pawluk A, Davidson AR & Maxwell KL (2017) Anti-CRISPR: Discovery, mechanism and function. Nat Rev Microbiol 16:12-17, doi: 10.1038/nrmicro.2017.120

  • Wagner DL, Amini L et al. (2018) High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 25:242-248, doi: 10.1038/s41591-018-0204-6

  • Ledford H (2020) CRISPR gene editing in human embryos wreaks chromosomal mayhem. Nature 583:17-18, doi: 10.1038/d41586-020-01906-4

  • Zuccaro MV, Xu J et al. (2020) Allele-Specific Chromosome Removal after Cas9 Cleavage in Human Embryos. Cell 183:1650-1664.e15, doi: 10.1016/j.cell.2020.10.025

  • Porto EM, Komor AC et al. (2020) Base editing: Advances and therapeutic opportunities. Nature Reviews Drug Discovery 19:839-859, doi: 10.1038/s41573-020-0084-6

  • Nuñez JK, Chen J et al. (2021) Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell doi: 10.1016/j.cell.2021.03.025

Kapitel 6: Bändigung des Zufalls
  • Mishra R (Editor) (2012) Mutagenesis. InTech, doi: 10.5772/2937

  • Muller HJ (1927) Artificial Transmutation of the Gene. Science 66:84-87, doi: 10.1126/science.66.1699.84

  • Calabrese EJ (2018) Muller's nobel prize research and peer review. Philosophy, Ethics, and Humanities in Medicine 13, doi: 10.1186/s13010-018-0066-z

  • Malling HV (2004) History of the science of mutagenesis from a personal perspective. Environ Mol Mutagen 44:372-386, doi: 10.1002/em.20064

  • Hamer L, DeZwaan TM et al. (2001) Recent advances in large-scale transposon mutagenesis. Current Opinion in Chemical Biology 5:67-73, doi: 10.1016/s1367-5931(00)00162-9

  • Murray MJ & Todd WA (1972) Registration of todd's mitcham peppermint 1 (reg. no. 1). Crop Sci 12:128-128, doi: 10.2135/cropsci1972.0011183x001200010056x

  • Hutchison C, Phillips S et al. (1978) Mutagenesis at a specific position in a DNA sequence. Journal of Biological Chemistry 253:6551-6560, doi: 10.1016/s0021-9258(19)46967-6

Kapitel 7: Dolly war kein Clown
  • Booth W, Smith CF et al. (2012) Facultative parthenogenesis discovered in wild vertebrates. Biol Lett 8:983-985, doi: 10.1098/rsbl.2012.0666

  • Campbell KHS, McWhir J et al. (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64-66, doi: 10.1038/380064a0

  • Manafi M (Editor) (2011) Artificial Insemination in Farm Animals. InTech, doi: 10.5772/713

  • Keefer CL (2015) Artificial cloning of domestic animals. Proc Natl Acad Sci USA 112:8874-8878, doi: 10.1073/pnas.1501718112

  • Willadsen SM (1979) A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature 277:298-300, doi: 10.1038/277298a0

  • Willadsen SM & Polge C (1981) Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Veterinary Record 108:211-213, doi: 10.1136/vr.108.10.211

  • Willadsen SM (1986) Nuclear transplantation in sheep embryos. Nature 320:63-65, doi: 10.1038/320063a0

— (1989) Cloning of sheep and cow embryos. Genome 31:956-962, doi: 10.1139/g89-167

  • Hwang WS (2004) Evidence of a Pluripotent Human Embryonic Stem Cell Line Derived from a Cloned Blastocyst. Science 303:1669-1674, doi: 10.1126/science.1094515

— (2005) Patient-Specific Embryonic Stem Cells Derived from Human SCNT Blastocysts. Science 308:1777-1783, doi: 10.1126/science.1112286

  • French AJ, Adams CA et al. (2008) Development of Human Cloned Blastocysts Following Somatic Cell Nuclear Transfer with Adult Fibroblasts. Stem Cells 26:485-493, doi: 10.1634/stemcells.2007-0252

  • Noggle S, Fung HL et al. (2011) Human oocytes reprogram somatic cells to a pluripotent state. Nature 478:70-75, doi: 10.1038/nature10397

  • Trounson A & DeWitt ND (2013) Pluripotent Stem Cells from Cloned Human Embryos: Success at Long Last. Cell Stem Cell 12:636-638, doi: 10.1016/j.stem.2013.05.022

  • Chung YG, Eum JH et al. (2014) Human Somatic Cell Nuclear Transfer Using Adult Cells. Cell Stem Cell 14:777-780, doi: 10.1016/j.stem.2014.03.015

  • Liu Z, Cai Y et al. (2018) Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer. Cell 172:881-887.e7, doi: 10.1016/j.cell.2018.01.020

  • Takahashi K & Yamanaka S (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126:663-676, doi: 10.1016/j.cell.2006.07.024

Kapitel 8: Unsere DNA als Glaskugel
  • Zerjal T, Xue Y et al. (2003) The Genetic Legacy of the Mongols. The American Journal of Human Genetics 72:717-721, doi: 10.1086/367774

  • Rawi SA, Louvet-Vallee S et al. (2011) Postfertilization Autophagy of Sperm Organelles Prevents Paternal Mitochondrial DNA Transmission. Science 334:1144-1147, doi: 10.1126/science.1211878

  • Hentschel MW & Pötzl NF (1986), Die position der RAF hat sich verbessert. Zugegriffen unter Internetlink, zugegriffen am 15/01/21

  • Editorial (1912) The Precipitin Reaction. Nature 88:566-566, doi: 10.1038/088566a0

  • Tautz D & Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 12:4127-4138, doi: 10.1093/nar/12.10.4127

  • Tautz D, Trick M & Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652-656, doi: 10.1038/322652a0

  • Jeffreys AJ, Wilson V & Thein SL (1985) Hypervariable 'minisatellite' regions in human DNA. Nature 314:67-73, doi: 10.1038/314067a0

  • Hagelberg E, Gray IC & Jeffreys AJ (1991) Identification of the skeletal remains of a murder victim by DNA analysis. Nature 352:427-429, doi: 10.1038/352427a0

  • Gill P, Jeffreys AJ & Werrett DJ (1985) Forensic application of DNA `fingerprints'. Nature 318:577-579, doi: 10.1038/318577a0

  • Butler JM & Hill CR (2012) Biology and Genetics of New Autosomal STR Loci Useful for Forensic DNA Analysis. Forensic Science Review 24:15-26

  • Hill J (2013) Biology and Genetics of New Autosomal STR Loci Useful for Forensic DNA Analysis. In: Forensic DNA Analysis, 181-198, CRC Press, doi: 10.1201/b15361-13

  • Sullivan K, Mannucci A et al. (1993) A rapid and quantitative DNA sex test: Fluorescence-based PCR analysis of X-Y homologous gene amelogenin. BioTechniques 15:636-641

  • Weir BS (2007) The rarity of DNA profiles. The Annals of Applied Statistics 1:358-370, doi: 10.1214/07-aoas128

  • Hares DR (2015) Selection and implementation of expanded CODIS core loci in the United States. Forensic Science International: Genetics 17:33-34, doi: 10.1016/j.fsigen.2015.03.006

  • Gill P, Ivanov PL et al. (1994) Identification of the remains of the Romanov family by DNA analysis. Nature Genetics 6:130-135, doi: 10.1038/ng0294-130

  • Wambaugh J (1989) The blooding. Bantam Books, New York, ISBN 978-0-553-76330-0

  • Erlich Y, Shor T et al. (2018) Identity inference of genomic data using long-range familial searches. Science 362:690-694, doi: 10.1126/science.aau4832

  • Kaiser J (2018) We will find you: DNA search used to nab Golden State Killer can home in on about 60% of white Americans. Science doi: 10.1126/science.aav7021

  • M'charek A, Toom V & Jong L (2020) The Trouble with Race in Forensic Identification. Science, Technology, & Human Values Human Values 45:804-828, doi: 10.1177/0162243919899467

  • Pääbo S (1985) Molecular cloning of Ancient Egyptian mummy DNA. Nature 314:644-645, doi: 10.1038/314644a0

  • Pauling L, Zuckerkandl E et al. (1963) Chemical Paleogenetics. Molecular „Restoration Studies“ of Extinct Forms of Life. Acta Chem Scand 17 supl.:9-16, doi: 10.3891/acta.chem.scand.17s-0009

  • Green RE, Krause J et al. (2010) A Draft Sequence of the Neandertal Genome. Science 328:710-722, doi: 10.1126/science.1188021

  • Reich D, Green RE et al. (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468:1053-1060, doi: 10.1038/nature09710

  • Prüfer K, Racimo F et al. (2013) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43-49, doi: 10.1038/nature12886

  • Krause J (2019) Die Reise unserer Gene eine Geschichte über uns und unsere Vorfahren. Propyläen, Berlin, ISBN 3549100027

  • Peeters S & Zwart H (2020) Neanderthals as familiar strangers and the human spark: How the `golden years' of Neanderthal research reopen the question of human uniqueness. HPLS 42, doi: 10.1007/s40656-020-00327-w

  • Slon V, Mafessoni F et al. (2018) The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561:113-116, doi: 10.1038/s41586-018-0455-x

  • Hublin JJ, Ben-Ncer A et al. (2017) New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546:289-292, doi: 10.1038/nature22336

  • Richter D, Grün R et al. (2017) The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546:293-296, doi: 10.1038/nature22335

  • Bergström A, Stringer C et al. (2021) Origins of modern human ancestry. Nature 590:229-237, doi: 10.1038/s41586-021-03244-5

  • Rogers AR, Harris NS & Achenbach AA (2020) Neanderthal-Denisovan ancestors interbred with a distantly related hominin. Sci Adv 6:eaay5483, doi: 10.1126/sciadv.aay5483

  • Gibbons A (2020) Mysterious `ghost' populations had multiple trysts with human ancestors. Science doi: 10.1126/science.abb3777

  • Price M (2020) Africans, too, carry Neanderthal genetic legacy. Science 367:497-497, doi: 10.1126/science.367.6477.497

  • Kanitz R, Guillot EG et al. (2018) Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses. PLoS ONE 13:e0192460, doi: 10.1371/journal.pone.0192460

  • Noonan JP, Coop G et al. (2006) Sequencing and Analysis of Neanderthal Genomic DNA. Science 314:1113-1118, doi: 10.1126/science.1131412

  • Jeong C, Alkorta-Aranburu G et al. (2014) Admixture facilitates genetic adaptations to high altitude in Tibet. Nat Commun 5, doi: 10.1038/ncomms4281

  • Miao B, Wang Z & Li Y (2017) Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Grey Wolf from the Tibetan Plateau. Mol Biol Evol 34:734-743, doi: 10.1093/molbev/msw274

  • Liu X, Zhang Y et al. (2019) EPAS1 Gain-of-Function Mutation Contributes to High-Altitude Adaptation in Tibetan Horses. Molecular Biology and Evolution 36:2591-2603, doi: 10.1093/molbev/msz158

  • Wang MS, Wang S et al. (2020) Ancient Hybridization with an Unknown Population Facilitated High-Altitude Adaptation of Canids. Molecular Biology and Evolution 37:2616-2629, doi: 10.1093/molbev/msaa113

  • _Nédélec Y, Sanz J et al. (2016) Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens. Cell 167:657-669.e21, doi: 10.1016/j.cell.2016.09.025

  • Quach H, Rotival M et al. (2016) Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations. Cell 167:643-656.e17, doi: 10.1016/j.cell.2016.09.024

  • Enard D & Petrov DA (2018) Evidence that RNA Viruses Drove Adaptive Introgression between Neanderthals and Modern Humans. Cell 175:360-371.e13, doi: 10.1016/j.cell.2018.08.034

  • Warren M (2018) Diverse genome study upends understanding of how language evolved. Nature doi: 10.1038/d41586-018-05859-7

  • Miller W, Drautz DI et al. (2008) Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387-390, doi: 10.1038/nature07446

  • Gaunitz C, Fages A et al. (2018) Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science 360:111-114, doi: 10.1126/science.aao3297

  • Ramos-Madrigal J, Runge AKW et al. (2019) Palaeogenomic insights into the origins of French grapevine diversity. Nat Plants 5:595-603, doi: 10.1038/s41477-019-0437-5

  • Kistler L, Maezumi SY et al. (2018) Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362:1309-1313, doi: 10.1126/science.aav0207

  • Gros-Balthazard M, Flowers JM et al. (2021) The genomes of ancient date palms germinated from 2,000 y old seeds. Proc Natl Acad Sci USA 118:e2025337118, doi: 10.1073/pnas.2025337118

  • Beal WJ (1905) The Vitality of Seeds. Botanical Gazette 40:140-143

  • Telewski FW & Zeevaart JAD (2002) The 120-yr period for Dr. Beals seed viability experiment. American Journal of Botany 89:1285-1288, doi: 10.3732/ajb.89.8.1285

  • Buniello A, MacArthur JAL et al. (2018) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Research 47:D1005-D1012, doi: 10.1093/nar/gky1120

  • Klein RJ (2005) Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science 308:385-389, doi: 10.1126/science.1109557

  • Boutin TS, Charteris DG et al. (2019) Insights into the genetic basis of retinal detachment. Human Molecular Genetics 29:689-702, doi: 10.1093/hmg/ddz294

  • Watanabe K, Stringer S et al. (2019) A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet 51:1339-1348, doi: 10.1038/s41588-019-0481-0

  • Mullins N, Forstner AJ et al. (2021) Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet 53:817-829, doi: 10.1038/s41588-021-00857-4

  • Gallagher MD & Chen-Plotkin AS (2018) The Post-GWAS Era: From Association to Function. The American Journal of Human Genetics 102:717-730, doi: 10.1016/j.ajhg.2018.04.002

  • Cuervo-Alarcon L, Arend M et al. (2021) A candidate gene association analysis identifies SNPs potentially involved in drought tolerance in European beech (Fagus sylvatica L.). Scientific Reports 11, doi: 10.1038/s41598-021-81594-w

  • Zhang W, Reeves GR & Tautz D (2021) Testing Implications of the Omnigenic Model for the Genetic Analysis of Loci Identified through Genome-wide Association. Current Biology 31:1092-1098.e6, doi: 10.1016/j.cub.2020.12.023

  • Galton F (1875) The History of Twins, As a Criterion of the Relative Powers of Nature and Nurture. Fraser’s Magazine 12:566-76

  • Bouchard TJ (1984) Twins Reared Together and Apart: What They Tell Us About Human Diversity. In: Individuality and Determinism, 147-184, Springer US, doi: 10.1007/978-1-4615-9379-9_7

  • Crouch DJM, Winney B et al. (2018) Genetics of the human face: Identification of large-effect single gene variants. Proc Natl Acad Sci USA 115:E676-E685, doi: 10.1073/pnas.1708207114

  • Galton F (1879) Composite Portraits, Made by Combining Those of Many Different Persons Into a Single Resultant Figure. The Journal of the Anthropological Institute of Great Britain and Ireland 8:132, doi: 10.2307/2841021

  • Xiong Z, Dankova G et al. (2019) Novel genetic loci affecting facial shape variation in humans. eLife 8, doi: 10.7554/elife.49898

  • Gurovich Y, Hanani Y et al. (2019) Identifying facial phenotypes of genetic disorders using deep learning. Nat Med 25:60-64, doi: 10.1038/s41591-018-0279-0

  • Davenport GC & Davenport CB (1907) Heredity of Eye Color in Man. Science 26:589-592, doi: 10.1126/science.26.670.589-b

  • Simcoe M, Valdes A et al. (2021) Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. Sci Adv 7:eabd1239, doi: 10.1126/sciadv.abd1239

  • Townsend P, Dna's twist to the right is not to be meddled with, so let's lose the lefties. Zugegriffen unter Internetlink, zugegriffen am 19/03/21

Kapitel 9: Künstliche Gene und Organismen
  • Ro DK, Paradise EM et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940-943, doi: 10.1038/nature04640

  • Hommel M (2008) The future of artemisinins: Natural, synthetic or recombinant? Journal of Biology 7:38, doi: 10.1186/jbiol101

  • Peplow M (2016) Synthetic biology's first malaria drug meets market resistance. Nature 530:389-390, doi: 10.1038/530390a

  • Westfall PJ, Pitera DJ et al. (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109:E111-E118, doi: 10.1073/pnas.1110740109

  • Paddon CJ, Westfall PJ et al. (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528-532, doi: 10.1038/nature12051

  • Kohman RE, Kunjapur AM et al. (2018) From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. Angew Chem Int Ed 57:4313-4328, doi: 10.1002/anie.201707976

  • Sturtevant AH (1923) Inheritance of Direction of Coilling in Limnaea. Science 58:269-270, doi: 10.1126/science.58.1501.269

  • Wang L, Xie J & Schultz PG (2006) Expanding the Genetic Code. Annu Rev Biophys Biomol Struct 35:225-249, doi: 10.1146/annurev.biophys.35.101105.121507

  • Ma NJ & Isaacs FJ (2016) Genomic Recoding Broadly Obstructs the Propagation of Horizontally Transferred Genetic Elements. Cell Systems 3:199-207, doi: 10.1016/j.cels.2016.06.009

  • de la Torre D & Chin JW (2020) Reprogramming the genetic code. Nat Rev Genet 22:169-184, doi: 10.1038/s41576-020-00307-7

  • Dunkelmann DL, Willis JCW et al. (2020) Engineered triply orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Nat Chem 12:535-544, doi: 10.1038/s41557-020-0472-x

  • Neumann H, Wang K et al. (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441-444, doi: 10.1038/nature08817

  • Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550:53-60, doi: 10.1038/nature24031

  • Khorana H, Agarwal K et al. (1972) Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Journal of Molecular Biology 72:209-217, doi: 10.1016/0022-2836(72)90146-5

  • Gibson DG, Glass JI et al. (2010) Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science 329:52-56, doi: 10.1126/science.1190719

  • Annaluru N, Muller H et al. (2014) Total Synthesis of a Functional Designer Eukaryotic Chromosome. Science 344:55-58, doi: 10.1126/science.1249252

  • Wimmer E (2006) The test-tube synthesis of a chemical called poliovirus. EMBO Rep reports 7, doi: 10.1038/sj.embor.7400728

  • Lentzos F (2012) Synthetic biology, security and governance. BioSocieties 7:339-351, doi: 10.1057/biosoc.2012.28

  • Abeli T, Rocchetti GA et al. (2021) Seventeen `extinct' plant species back to conservation attention in Europe. Nature Plants 7:282-286, doi: 10.1038/s41477-021-00878-1

  • Folch J, Cocero M et al. (2009) First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 71:1026-1034, doi: 10.1016/j.theriogenology.2008.11.005

  • Yamagata K, Nagai K et al. (2019) Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by live-cell imaging. Sci Rep 9, doi: 10.1038/s41598-019-40546-1

  • Griffin DK, Larkin DM & O'Connor RE (2020) Time lapse: A glimpse into prehistoric genomics. European Journal of Medical Genetics 63:103640, doi: 10.1016/j.ejmg.2019.03.004

  • Wright DWM (2018) Cloning animals for tourism in the year 2070. Futures 95:58-75, doi: 10.1016/j.futures.2017.10.002

Kapitel 10: Künstliche Intelligenz und echte Erkenntnisse
  • Bycroft C, Freeman C et al. (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203-209, doi: 10.1038/s41586-018-0579-z

  • Pearce F (2008) Ozone hole? What ozone hole? New Scientist 199:46-47

  • Farman JC, Gardiner BG & Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207-210, doi: 10.1038/315207a0

  • Seeland M, Rzanny M et al. (2019) Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics 20, doi: 10.1186/s12859-018-2474-x

  • Navarro FCP, Mohsen H et al. (2019) Genomics and data science: An application within an umbrella. Genome Biol 20, doi: 10.1186/s13059-019-1724-1

  • Jordan MI & Mitchell TM (2015) Machine learning: Trends, perspectives, and prospects. Science 349:255-260, doi: 10.1126/science.aaa8415

  • Silver D, Schrittwieser J et al. (2017) Mastering the game of Go without human knowledge. Nature 550:354-359, doi: 10.1038/nature24270

  • Silver D, Hubert T et al. (2018) A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362:1140-1144, doi: 10.1126/science.aar6404

Kapitel 11: Gentechnik und Umweltschutz – geht das?
  • Crutzen P & Stoermer E (2000) The Anthropocene. Global Change Newsl 41:17-18

  • Pimentel D (2008) Food, energy, and society. CRC Press, Boca Raton, FL, ISBN 1420046675

  • Hill J, Nelson E et al. (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206-11210, doi: 10.1073/pnas.0604600103

  • Yue M, Lambert H et al. (2021) Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews 146:111180, doi: 10.1016/j.rser.2021.111180

  • Appel J, Hueren V et al. (2020) Cyanobacterial in vivo solar hydrogen production using a photosystem I-hydrogenase (PsaD-HoxYH) fusion complex. Nat Energy 5:458-467, doi: 10.1038/s41560-020-0609-6

  • Wünschiers R (2015) Making-of Synthetic Biology: The European CyanoFactory Research Consortium. In: Ethics of Science and Technology Assessment, 55-72, Springer International Publishing, doi: 10.1007/978-3-319-21088-9_3

  • Katayama N, Iijima H & Osanai T (2018) Production of Bioplastic Compounds by Genetically Manipulated and Metabolic Engineered Cyanobacteria. In: Synthetic Biology of Cyanobacteria, 155-169, Springer Singapore, doi: 10.1007/978-981-13-0854-3_7

  • Heidorn T, Camsund D et al. (2011) Synthetic Biology in Cyanobacteria. In: Methods in Enzymology, 539-579, Elsevier, doi: 10.1016/b978-0-12-385075-1.00024-x

  • DiCarlo JE, Chavez A et al. (2015) Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol 33:1250-1255, doi: 10.1038/nbt.3412

  • Gantz VM, Jasinskiene N et al. (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA 112:E6736-E6743, doi: 10.1073/pnas.1521077112

  • Simon S, Otto M & Engelhard M (2018) Synthetic gene drive: Between continuity and novelty. EMBO Reports 19, doi: 10.15252/embr.201845760

  • Tanaka H, Stone HA & Nelson DR (2017) Spatial gene drives and pushed genetic waves. Proc Natl Acad Sci USA 114:8452-8457, doi: 10.1073/pnas.1705868114

  • Esvelt KM & Gemmell NJ (2017) Conservation demands safe gene drive. PLoS Biology 15:e2003850, doi: 10.1371/journal.pbio.2003850

  • Jones MS, Delborne JA et al. (2019) Does the U.S. public support using gene drives in agriculture? And what do they want to know? Sci Adv 5:eaau8462, doi: 10.1126/sciadv.aau8462

  • van Kleunen M, Dawson W et al. (2015) Global exchange and accumulation of non-native plants. Nature 525:100-103, doi: 10.1038/nature14910

  • Schrimpf A (2014) Invasive Chinese mitten crab (Eriocheir sinensis) transmits crayfish plague pathogen (Aphanomyces astaci). AI 9:203-209, doi: 10.3391/ai.2014.9.2.09

  • Phillips BL, Brown GP et al. (2006) Invasion and the evolution of speed in toads. Nature 439:803-803, doi: 10.1038/439803a

  • Wisely SM, Ryder OA et al. (2015) A Road Map for 21st Century Genetic Restoration: Gene Pool Enrichment of the Black-Footed Ferret. JHERED 106:581-592, doi: 10.1093/jhered/esv041

  • Breed MF, Harrison PA et al. (2019) The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet 20:615-628, doi: 10.1038/s41576-019-0152-0

  • Shapiro B (2016) Pathways to de-extinction: How close can we get to resurrection of an extinct species? Funct Ecol 31:996-1002, doi: 10.1111/1365-2435.12705

  • Novak B (2018) De-Extinction. Genes 9:548, doi: 10.3390/genes9110548

  • Powell WA, Newhouse AE & Coffey V (2019) Developing Blight-Tolerant American Chestnut Trees. Cold Spring Harb Perspect Biol 11:a034587, doi: 10.1101/cshperspect.a034587

  • Polin LD, Liang H et al. (2005) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tiss Organ Cult 84:69-79, doi: 10.1007/s11240-005-9002-1

  • Power ME (2021) Synthetic threads through the web of life. Proc Natl Acad Sci USA 118:e2004833118, doi: 10.1073/pnas.2004833118

Kapitel 12: Epigenetik: Darwin und Lamarck vereint
  • Heard E & Martienssen RA (2014) Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell 157:95-109, doi: 10.1016/j.cell.2014.02.045

  • Garnier O, Laoueillé-Duprat S & Spillane C (2008) Genomic imprinting in plants. Epigenetics 3:14-20, doi: 10.4161/epi.3.1.5554

  • Gustafsson A (1979) Linnaeus' Peloria: The history of a monster. Theoret Appl Genetics 54:241-248, doi: 10.1007/bf00281206

  • Cubas P, Vincent C & Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157-161, doi: 10.1038/43657

  • Crouse HV (1960) The Controlling Element in Sex Chromosome Behavior in Sciara. Genetics 45:1429-1443, doi: 10.1093/genetics/45.10.1429

  • McGrath J & Solter D (1983) Nuclear transplantation in mouse embryos. J Exp Zool 228:355-362, doi: 10.1002/jez.1402280218

  • — (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179-183, doi: 10.1016/0092-8674(84)90313-1

  • Ehrlich M & Wang R (1981) 5-Methylcytosine in eukaryotic DNA. Science 212:1350-1357, doi: 10.1126/science.6262918

  • Li ZK, Wang LY et al. (2018) Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions. Cell Stem Cell 23:665-676.e4, doi: 10.1016/j.stem.2018.09.004

  • Tucci V, Isles AR et al. (2019) Genomic Imprinting and Physiological Processes in Mammals. Cell 176:952-965, doi: 10.1016/j.cell.2019.01.043

  • Goday C & Esteban MR (2001) Chromosome elimination in sciarid flies. Bioessays 23:242-250, doi: 10.1002/1521-1878(200103)23:3<242::aid-bies1034>3.0.co;2-p

  • Barlow DP, Stöger R et al. (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84-87, doi: 10.1038/349084a0

  • Renfree MB, Suzuki S & Kaneko-Ishino T (2013) The origin and evolution of genomic imprinting and viviparity in mammals. Phil Trans R Soc B 368:20120151, doi: 10.1098/rstb.2012.0151

  • Barlow DP & Bartolomei MS (2014) Genomic Imprinting in Mammals. Cold Spring Harbor Perspectives in Biology 6:a018382-a018382, doi: 10.1101/cshperspect.a018382

  • Wolpert L (2019) Principles of development. Oxford University Press, Oxford, United Kingdom New York, NY, ISBN 9780192520814

  • Cleaton MA, Edwards CA & Ferguson-Smith AC (2014) Phenotypic Outcomes of Imprinted Gene Models in Mice: Elucidation of Pre- and Postnatal Functions of Imprinted Genes. Annu Rev Genom Hum Genet 15:93-126, doi: 10.1146/annurev-genom-091212-153441

  • Bernstein C & Bernstein H (2020) Demethylation in Early Embryonic Development and Memory. In: DNA Methylation Mechanism, IntechOpen, doi: 10.5772/intechopen.90306

  • Fernandes J, Arida RM & Gomez-Pinilla F (2017) Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neuroscience & Biobehavioral Reviews Biobehavioral Reviews 80:443-456, doi: 10.1016/j.neubiorev.2017.06.012

  • Ingerslev LR, Donkin I et al. (2018) Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin Epigenet 10, doi: 10.1186/s13148-018-0446-7

  • Plasschaert RN & Bartolomei MS (2014) Genomic imprinting in development, growth, behavior and stem cells. Development 141:1805-1813, doi: 10.1242/dev.101428

  • Ugur B, Chen K & Bellen HJ (2016) Drosophilatools and assays for the study of human diseases. Disease Models & Mechanisms 9:235-244, doi: 10.1242/dmm.023762

  • Mirzoyan Z, Sollazzo M et al. (2019) Drosophila melanogaster: A Model Organism to Study Cancer. Frontiers in Genetics 10, doi: 10.3389/fgene.2019.00051

  • Bygren LO, Kaati G & Edvinsson S (2001) Longevity Determined by Paternal Ancestors' Nutrition during Their Slow Growth Period. Acta Biotheoretica 49:53-59, doi: 10.1023/a:1010241825519

  • Kaati G, Bygren L & Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur J Hum Genet 10:682-688, doi: 10.1038/sj.ejhg.5200859

  • Yoshizaki K, Kimura R et al. (2021) Paternal age affects offspring via an epigenetic mechanism involving REST/NRSF. EMBO Rep reports 22, doi: 10.15252/embr.202051524

  • B DD (1930) Degeneration and Regeneration of the Nervous System. Nature 125:230-231, doi: 10.1038/125230a0

  • Lu Y, Brommer B et al. (2020) Reprogramming to recover youthful epigenetic information and restore vision. Nature 588:124-129, doi: 10.1038/s41586-020-2975-4

Kapitel 13: Gentherapien
  • Abbott A (1992) German state unexpectedly approves first gene trials. Nature 360:702-702, doi: 10.1038/360702a0

  • Couzin-Frankel J (2015) Baby's leukemia recedes after novel cell therapy. Science 350:731-731, doi: 10.1126/science.350.6262.731

  • — (2020) CRISPR takes on cancer. Science 367:616-616, doi: 10.1126/science.367.6478.616

  • Li H, Yang Y et al. (2020) Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Sig Transduct Target Ther 5, doi: 10.1038/s41392-019-0089-y

  • Zittersteijn HA, Harteveld CL et al. (2021) A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies. Front Genome Ed 2, doi: 10.3389/fgeed.2020.617780

  • Frangoul H, Altshuler D et al. (2021) CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N Engl J Med 384:252-260, doi: 10.1056/nejmoa2031054

  • Guo P, Yang J et al. (2019) Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel. Proc Natl Acad Sci USA 116:18295-18303, doi: 10.1073/pnas.1904697116

  • Subbaraman N (2021) Limit on lab-grown human embryos dropped by stem-cell body. Nature 594:18-19, doi: 10.1038/d41586-021-01423-y

  • Cowgill BO, Bogart LM et al. (2008) Fears About HIV Transmission in Families With an HIV-Infected Parent: A Qualitative Analysis. PEDIATRICS 122:e950-e958, doi: 10.1542/peds.2008-0390

  • Liu R, Paxton WA et al. (1996) Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection. Cell 86:367-377, doi: 10.1016/s0092-8674(00)80110-5

  • Galvani AP & Slatkin M (2003) Evaluating plague and smallpox as historical selective pressures for the CCR5- 32 HIV-resistance allele. Proc Natl Acad Sci USA 100:15276-15279, doi: 10.1073/pnas.2435085100

  • Allers K, Hütter G et al. (2011) Evidence for the cure of HIV infection by CCR5Δ32 stem cell transplantation. Blood 117:2791-2799, doi: 10.1182/blood-2010-09-309591

  • Gupta RK, Abdul-Jawad S et al. (2019) HIV-1 remission following CCR5Δ32 haematopoietic stem-cell transplantation. Nature 568:244-248, doi: 10.1038/s41586-019-1027-4

  • Stephens JC, Reich DE et al. (1998) Dating the Origin of the CCR5-Δ32 AIDS-Resistance Allele by the Coalescence of Haplotypes. The American Journal of Human Genetics 62:1507-1515, doi: 10.1086/301867

Kapitel 14: Wie Transhumanisten uns für die Zukunft wappnen (wollen)
  • Wünschiers R (2016) Über die Modernisierung des Menschen. In: Modernes Leben – Leben in der Moderne, 123-145, Springer Fachmedien Wiesbaden, doi: 10.1007/978-3-658-13752-6_9

  • Huxley J (1968) Transhumanism. Journal of Humanistic Psychology 8:73-76, doi: 10.1177/002216786800800107

  • Bostrom N (2005) A history of transhumanist thought. Journal of Evolution and Technology 14:1-25

  • Finch J (2011) The ancient origins of prosthetic medicine. The Lancet 377:548-549, doi: 10.1016/s0140-6736(11)60190-6

  • Stingl K, Bartz-Schmidt KU et al. (2015) Subretinal Visual Implant Alpha IMS - Clinical trial interim report. Vision Research 111:149-160, doi: 10.1016/j.visres.2015.03.001

  • Chuang AT, Margo CE & Greenberg PB (2014) Retinal implants: A systematic review. Br J Ophthalmol 98:852-856, doi: 10.1136/bjophthalmol-2013-303708

  • Zrenner E (2012) Solar cells for the blind. Nature Photon 6:344-345, doi: 10.1038/nphoton.2012.114

  • Humayun MS, Dorn JD et al. (2012) Interim Results from the International Trial of Second Sight's Visual Prosthesis. Ophthalmology 119:779-788, doi: 10.1016/j.ophtha.2011.09.028

  • Tang YP, Shimizu E et al. (1999) Genetic enhancement of learning and memory in mice. Nature 401:63-69, doi: 10.1038/43432

  • Huang J, Kang BH et al. (2016) Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity 45:1108-1121, doi: 10.1016/j.immuni.2016.10.027

  • Smalley E (2018) FDA warns public of dangers of DIY gene therapy. Nat Biotechnol 36:119-120, doi: 10.1038/nbt0218-119

Kapitel 15: Coronavirus – Wenn »negativ« positiv ist
  • Lofgren ET & Fefferman NH (2007) The untapped potential of virtual game worlds to shed light on real world epidemics. The Lancet Infectious Diseases 7:625-629, doi: 10.1016/s1473-3099(07)70212-8

  • Schalk A & Hawn M (1931) An Apparently New Respiratory Disease of Chicks. Journal of the American Veterinary Medical Association 78:413-422

  • Boursnell MEG, Brown TDK et al. (1987) Completion of the Sequence of the Genome of the Coronavirus Avian Infectious Bronchitis Virus. Journal of General Virology 68:57-77, doi: 10.1099/0022-1317-68-1-57

  • Hamre D & Procknow JJ (1966) A New Virus Isolated from the Human Respiratory Tract. Experimental Biology and Medicine 121:190-193, doi: 10.3181/00379727-121-30734

  • Yang YL, Yu JQ & Huang YW (2020) Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): An update three years after its discovery. Virus Research 285:198024, doi: 10.1016/j.virusres.2020.198024

  • Zhou P, Fan H et al. (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556:255-258, doi: 10.1038/s41586-018-0010-9

  • Zhu N, Zhang D et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine 382:727-733, doi: 10.1056/nejmoa2001017

  • Wu F, Zhao S et al. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265-269, doi: 10.1038/s41586-020-2008-3

  • Boni MF, Lemey P et al. (2020) Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol 5:1408-1417, doi: 10.1038/s41564-020-0771-4

  • Mallapaty S (2021) After the WHO report: What's next in the search for COVID's origins. Nature 592:337-338, doi: 10.1038/d41586-021-00877-4

  • Bloom JD, Chan YA et al. (2021) Investigate the origins of COVID-19. Science 372:694.1-694, doi: 10.1126/science.abj0016

  • Graham RL & Baric RS (2020) SARS-CoV-2: Combating Coronavirus Emergence. Immunity 52:734-736, doi: 10.1016/j.immuni.2020.04.016

  • Cui J, Li F & Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology 17:181-192, doi: 10.1038/s41579-018-0118-9

  • Perlman S (2020) Another Decade, Another Coronavirus. New England Journal of Medicine 382:760-762, doi: 10.1056/nejme2001126

  • Donnelly CA, Malik MR et al. (2019) Worldwide Reduction in MERS Cases and Deaths since 2016. Emerging Infectious Diseases 25:1758-1760, doi: 10.3201/eid2509.190143

  • Taubenberger JK, Reid AH et al. (2005) Characterization of the 1918 influenza virus polymerase genes. Nature 437:889-893, doi: 10.1038/nature04230

  • Zimmer SM & Burke DS (2009) Historical Perspective – Emergence of Influenza A (H1N1) Viruses. N Engl J Med 361:279-285, doi: 10.1056/nejmra0904322

  • Defoe D (2020) Die Pest zu London. LIWI, Literatur- und Wissenschaftsverlag, Göttingen, ISBN 3965423347

  • Brüssow H & Brüssow L (2021) Clinical evidence that the pandemic from 1889 to 1891 commonly called the russian flu might have been an earlier coronavirus pandemic. Microbial Biotechnology 14:1860-1870, doi: 10.1111/1751-7915.13889

  • Imai M, Watanabe T et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420-428, doi: 10.1038/nature10831

  • Herfst S, Schrauwen EJA et al. (2012) Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science 336:1534-1541, doi: 10.1126/science.1213362

  • Brown D (2013) Inferno: A novel. Doubleday, New York, ISBN 978-0-385-53785-8

  • Gibb R, Redding DW et al. (2020) Zoonotic host diversity increases in human-dominated ecosystems. Nature 584:398-402, doi: 10.1038/s41586-020-2562-8

  • Johnson CK, Hitchens PL et al. (2020) Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proceedings of the Royal Society B: Biological Sciences 287:20192736, doi: 10.1098/rspb.2019.2736

  • Irving AT, Ahn M et al. (2021) Lessons from the host defences of bats, a unique viral reservoir. Nature 589:363-370, doi: 10.1038/s41586-020-03128-0

  • Miller MR, McMinn RJ et al. (2016) Broad and Temperature Independent Replication Potential of Filoviruses on Cells Derived From Old and New World Bat Species. J Infect Dis 214:S297-S302, doi: 10.1093/infdis/jiw199

  • Hayman DTS (2019) Bat tolerance to viral infections. Nat Microbiol 4:728-729, doi: 10.1038/s41564-019-0430-9

  • Austad S (2010) Methusalehs Zoo: How Nature provides us with Clues for Extending Human Health Span. Journal of Comparative Pathology 142:S10-S21, doi: 10.1016/j.jcpa.2009.10.024

  • Gloza-Rausch F, Ipsen A et al. (2008) Detection and Prevalence Patterns of Group I Coronaviruses in Bats, Northern Germany. Emerg Infect Dis 14:626-631, doi: 10.3201/eid1404.071439

  • Cantuti-Castelvetri L, Ojha R et al. (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856-860, doi: 10.1126/science.abd2985

  • Yan R, Zhang Y et al. (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444-1448, doi: 10.1126/science.abb2762

  • Wrapp D, Wang N et al. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260-1263, doi: 10.1126/science.abb2507

  • Corman VM, Landt O et al. (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25, doi: 10.2807/1560-7917.es.2020.25.3.2000045

  • Drosten C, Günther S et al. (2003) Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. New England Journal of Medicine 348:1967-1976, doi: 10.1056/nejmoa030747

  • Callaway E (2020) The race for coronavirus vaccines: A graphical guide. Nature 580:576-577, doi: 10.1038/d41586-020-01221-y

  • Chuong EB, Elde NC & Feschotte C (2016) Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351:1083-1087, doi: 10.1126/science.aad5497

  • Herelle F (1922) Der Bakteriophage und seine Bedeutung für die Immunität. F. Vieweg & Sohn

  • Ball P (2020) The lightning-fast quest for COVID vaccines – and what it means for other diseases. Nature 589:16-18, doi: 10.1038/d41586-020-03626-1

  • Amit S, Regev-Yochay G et al. (2021) Early rate reductions of SARS-CoV-2 infection and COVID-19 in BNT162b2 vaccine recipients. The Lancet 397:875-877, doi: 10.1016/s0140-6736(21)00448-7

  • Aschwanden C (2021) Five reasons why COVID herd immunity is probably impossible. Nature 591:520-522, doi: 10.1038/d41586-021-00728-2

  • Desmond A & Offit PA (2021) On the Shoulders of Giants – From Jenner's Cowpox to mRNA Covid Vaccines. N Engl J Med 384:1081-1083, doi: 10.1056/nejmp2034334

  • Mulligan R & Berg P (1980) Expression of a bacterial gene in mammalian cells. Science 209:1422-1427, doi: 10.1126/science.6251549

  • Pollard AJ & Bijker EM (2020) A guide to vaccinology: From basic principles to new developments. Nat Rev Immunol 21:83-100, doi: 10.1038/s41577-020-00479-7

  • Wolff J, Malone R et al. (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465-1468, doi: 10.1126/science.1690918

  • Jazayeri SD & Poh CL (2019) Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Veterinary Research 50, doi: 10.1186/s13567-019-0698-z

  • Arashkia A, Jalilvand S et al. (2020) Severe acute respiratory syndrome-coronavirus-2 spike (S) protein based vaccine candidates: State of the art and future prospects. Rev Med Virol 31, doi: 10.1002/rmv.2183

  • Renz A, Widerspick L & Dräger A (2020) FBA reveals guanylate kinase as a potential target for antiviral therapies against SARS-CoV-2. Bioinformatics 36:i813-i821, doi: 10.1093/bioinformatics/btaa813

  • Initiative CHG (2021) Mapping the human genetic architecture of COVID-19. Nature doi: 10.1038/s41586-021-03767-x

  • Group TSCG (2020) Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med 383:1522-1534, doi: 10.1056/nejmoa2020283

  • Zeberg H & Pääbo S (2020) The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587:610-612, doi: 10.1038/s41586-020-2818-3

  • — (2021) A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc Natl Acad Sci USA 118:e2026309118, doi: 10.1073/pnas.2026309118

  • Pairo-Castineira E, et al. (2020) Genetic mechanisms of critical illness in COVID-19. Nature 591:92-98, doi: 10.1038/s41586-020-03065-y

  • Vennema H (1999) Genetic drift and genetic shift during feline coronavirus evolution. Veterinary Microbiology 69:139-141, doi: 10.1016/s0378-1135(99)00102-9

  • Zhang Y, Li J et al. (2015) Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination. Journal of Infection 70:641-650, doi: 10.1016/j.jinf.2014.12.005

  • Elbe S & Buckland-Merrett G (2017) Data, disease and diplomacy: GISAIDs innovative contribution to global health. Global Challenges 1:33-46, doi: 10.1002/gch2.1018

  • Konings F, Perkins MD et al. (2021) SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nat Microbiol doi: 10.1038/s41564-021-00932-w

  • Horie M, Honda T et al. (2010) Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463:84-87, doi: 10.1038/nature08695

  • Mi S, Lee X et al. (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785-789, doi: 10.1038/35001608

  • Zhang L, Richards A et al. (2021) Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proc Natl Acad Sci USA 118:e2105968118, doi: 10.1073/pnas.2105968118

  • Kistler KE & Bedford T (2021) Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E. eLife 10, doi: 10.7554/elife.64509

  • Marshall M (2020) The lasting misery of coronavirus long-haulers. Nature 585:339-341, doi: 10.1038/d41586-020-02598-6

  • Arnold C (2020) Could COVID delirium bring on dementia? Nature 588:22-24, doi: 10.1038/d41586-020-03360-8

  • Rhea EM, Logsdon AF et al. (2020) The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nature Neuroscience doi: 10.1038/s41593-020-00771-8

Kapitel 16: Zehn innovative Methoden im Bereich der Bio- und Gentechnologie
  • Editorial (2021) Method of the year 2020: Spatially resolved transcriptomics. Nature Methods 18:1-1, doi: 10.1038/s41592-020-01042-x

  • — (2020) Method of the year 2019: Single-cell multimodal omics. Nature Methods 17:1-1, doi: 10.1038/s41592-019-0703-5

  • — (2018) Method of the year 2018: Imaging in freely behaving animals. Nature Methods 16:1-1, doi: 10.1038/s41592-018-0292-8

  • — (2018) Method of the year 2017: Organoids. Nature Methods 15:1-1, doi: 10.1038/nmeth.4575

  • — (2017) Method of the year 2016: Epitranscriptome analysis. Nature Methods 14:1-1, doi: 10.1038/nmeth.4142

  • Nakane T, Kotecha A et al. (2020) Single-particle cryo-EM at atomic resolution. Nature 587:152-156, doi: 10.1038/s41586-020-2829-0

  • Editorial (2015) Method of the year 2015. Nature Methods 13:1-1, doi: 10.1038/nmeth.3730

  • — (2014) Method of the year 2014. Nature Methods 12:1-1, doi: 10.1038/nmeth.3251

  • — (2013) Method of the year 2013. Nature Methods 11:1-1, doi: 10.1038/nmeth.2801

  • — (2013) Method of the year 2012. Nature Methods 10:1-1, doi: 10.1038/nmeth.2329

  • — (2011) Method of the year 2011. Nature Methods 9:1-1, doi: 10.1038/nmeth.1852

  • Sahel JA, Boulanger-Scemama E et al. (2021) Partial recovery of visual function in a blind patient after optogenetic therapy. Nature Medicine 27:1223-1229, doi: 10.1038/s41591-021-01351-4

  • Editorial (2010) Method of the year 2010. Nature Methods 8:1-1, doi: 10.1038/nmeth.f.321